This year’s bp Energy Outlook explores the key trends and uncertainties surrounding the energy transition out to 2050. The three main scenarios considered in the Outlook – Net Zero, Accelerated, and New Momentum – have been updated to take account of two major developments over the past year: the Russia-Ukraine war and the passing of the Inflation Reduction Act in the US. The Outlook’s three main scenarios are designed to explore the range of possible outcomes for the global energy system over the next 30 years. Understanding this range of uncertainty helps bp to shape a strategy which is resilient to the different speeds and ways in which the energy system may transition.Key themes from the Outlook:The carbon budget is running out. Despite the marked increase in government ambitions, CO2 emissions have increased in every year since the Paris COP in 2015 (bar 2020). The longer the delay in taking decisive action to reduce GHG emissions on a sustained basis, the greater are the likely resulting economic and social costs.Government support for the energy transition has increased further in a number of countries, including the passing of the Inflation Reduction Act in the US. But the scale of the decarbonisation challenge suggests greater support is required, including policies to facilitate quicker permitting and approval of low-carbon energy and infrastructure. The disruption to global energy supplies and associated energy shortages caused by the Russia-Ukraine war increase the importance attached to addressing all three elements of the energy trilemma: secure, affordable, and lower carbon.The war has long lasting effects on the global energy system. The heightened focus on energy security increases demand for domestically produced renewables and other non-fossil fuels helping to accelerate the energy transition. The structure of energy demand changes in all three scenarios, with the importance of fossil fuels declining, replaced by a growing share for renewable energy and by increasing electrification. The transition to a low-carbon world requires a range of other energy sources and technologies, including low-carbon hydrogen, modern bioenergy, and carbon capture use and storage. Oil demand declines over the outlook, driven by falling use in road transport as the efficiency of the vehicle fleet improves and the electrification of road vehicles accelerates. Even so, oil continues to play a major role in the global energy system for the next 15-20 years across all three scenarios.The prospects for natural gas depend on the speed of the energy transition, with increasing demand in emerging economies as they grow and industrialise offset by the transition to lower-carbon energy sources led by the developed world.The recent energy shortages and higher prices highlight the importance of the transition away from hydrocarbons being orderly, such that the demand for hydrocarbons falls in line with available supplies. Natural declines in existing production sources means there needs to be continuing upstream investment in oil and natural gas over the next 30 years, including in Net Zero.
This year’s bp Energy Outlook explores the key trends and uncertainties surrounding the energy transition out to 2050. The three main scenarios considered in the Outlook – Net Zero, Accelerated, and New Momentum – have been updated to take account of two major developments over the past year: the Russia-Ukraine war and the passing of the Inflation Reduction Act in the US. The Outlook’s three main scenarios are designed to explore the range of possible outcomes for the global energy system over the next 30 years. Understanding this range of uncertainty helps bp to shape a strategy which is resilient to the different speeds and ways in which the energy system may transition.Key themes from the Outlook:The carbon budget is running out. Despite the marked increase in government ambitions, CO2 emissions have increased in every year since the Paris COP in 2015 (bar 2020). The longer the delay in taking decisive action to reduce GHG emissions on a sustained basis, the greater are the likely resulting economic and social costs.Government support for the energy transition has increased further in a number of countries, including the passing of the Inflation Reduction Act in the US. But the scale of the decarbonisation challenge suggests greater support is required, including policies to facilitate quicker permitting and approval of low-carbon energy and infrastructure. The disruption to global energy supplies and associated energy shortages caused by the Russia-Ukraine war increase the importance attached to addressing all three elements of the energy trilemma: secure, affordable, and lower carbon.The war has long lasting effects on the global energy system. The heightened focus on energy security increases demand for domestically produced renewables and other non-fossil fuels helping to accelerate the energy transition. The structure of energy demand changes in all three scenarios, with the importance of fossil fuels declining, replaced by a growing share for renewable energy and by increasing electrification. The transition to a low-carbon world requires a range of other energy sources and technologies, including low-carbon hydrogen, modern bioenergy, and carbon capture use and storage. Oil demand declines over the outlook, driven by falling use in road transport as the efficiency of the vehicle fleet improves and the electrification of road vehicles accelerates. Even so, oil continues to play a major role in the global energy system for the next 15-20 years across all three scenarios.The prospects for natural gas depend on the speed of the energy transition, with increasing demand in emerging economies as they grow and industrialise offset by the transition to lower-carbon energy sources led by the developed world.The recent energy shortages and higher prices highlight the importance of the transition away from hydrocarbons being orderly, such that the demand for hydrocarbons falls in line with available supplies. Natural declines in existing production sources means there needs to be continuing upstream investment in oil and natural gas over the next 30 years, including in Net Zero.